U.S. Experience and HALT MS Clinical Trial: 5-Year Follow-Up

Richard A. Nash, MD 06/02/2016

Consortium of MS Centers Annual Meeting National Harbor, MD

HALT MS: Study Overview

- Hypothesis: Intensive immunosuppressive therapy supported by autologous hematopoietic cell infusion will arrest disease activity in individuals with poor-risk MS.
- Study design: Prospective, open-label, single-arm, multicenter Phase II clinical trial.
- Primary Objective: To determine the 5-year durability of disease stabilization in MS subjects after HDIT and autologous HCT. Interim analysis was done at 3 years.

Primary Endpoint

Event-free survival during the 5 years after high-dose therapy.

<u>Composite endpoint</u> for event-free survival includes one or more of the following:

- a) Relapse
 - New neurological S/S persisting > 48 hrs
- b) MRI abnormalities (>12 months post-tx)
 . ≥ 2 or more independent MS lesions
- c) Progression in disability (> 6 months post-tx)
 - $\cdot \ge 1.0$ EDSS confirmed > 3 months later
- d) Mortality

Eligibility

- 1. Age: 18- 60 years, inclusive.
- 2. Diagnosis of MS using McDonald Criteria.
- 3. MS duration < 15 yrs from diagnosis.
- 4. RRMS with cumulative disability or PRMS.
- 5. EDSS 3.0 5.5
- 6. T2 abnormalities on MRI consistent with MS.
- 2 or more relapses within 18 months on therapy with EDSS increase > 0.5,

<u>or</u> 1 relapse on therapy with EDSS increase > 1.0 and 1 separate event with gadolinium-enhancing lesions (brain or spinal cord) on MRI.

8. Approval by MS Review Panel.

Patient Characteristics (n=25)

37 (26 – 52)
17/8
4.5 (3.0 – 5.5)
4.9 (0.6 – 12.0)
22
1
18
8
6
11

High-Dose Immunosuppressive Therapy Regimen (BEAM + ATG)

<u>HDIT</u>

- Day -6 BCNU 300 mg/m² IV
 - -5 VP-16 100 mg/m² bid IV; Ara C 100 mg/m² bid IV
 - -4 VP-16 100 mg/m² bid IV; Ara C 100 mg/m² bid IV
 - -3 VP-16 100 mg/m² bid IV; Ara C 100 mg/m² bid IV
 - -2 VP-16 100 mg/m² bid IV; Ara C 100 mg/m² bid IV rATG 2.5 mg/kg IV
 - -1 Melphalan 140 mg/m² IV; rATG 2.5 mg/kg IV
 - 0 CD34+ HSC infusion

Post-transplant

G-CSF from Day +5 until ANC >500/uL.

Prednisone 0.5 mg/kg/day from Day +7-21 then taper over 2 weeks.

Primary Endpoint: Event-Free Survival

Relapse-Free Survival

Note: Upon meeting primary endpoint, a participant is not censored from further events in the remaining components.

Note: Upon meeting primary endpoint, a participant is not censored from further events in the remaining components. The MRI event that occurred at 11.9 months was not a primary endpoint event, but rather an event that occurred subsequently after the subject met primary endpoint via clinical relapse at 5.1 months

Disease Progression-Free Survival

Note: Upon meeting primary endpoint, a participant is not censored from further events in the remaining components.

Summary

1. High-dose immunosuppressive therapy (BEAM + ATG) and autologous HCT with CD34-selected cells was well-tolerated with few serious early complications.

High-dose immunosuppressive therapy was highly effective for inducing sustained remissions of highly active RRMS (EDSS 3.0-5.5) through Year 5. No disease-modifying therapy was administered after transplant unless the subject experienced relapse or increase in EDSS.

MRI lesions reduced.

4. Brain volume stabilized at Year 3 through Year 5.

Investigators (HALT MS; ITN033AI)

Neurology Investigators

•Jim Bowen - Swedish Neuroscience Inst George Kraft - UW •Annette Wundes - UW George Hutton - Baylor •Michael Racke – OSU

Consultant Neurologists Paolo Muraro - Imperial College <u>Statisticians</u> •Harry Openshaw - COH •Olaf Stuve - UTSW Doug Arnold - McGill

Transplant Physicians •Steve Devine – OSU •Uday Popat - MD Anderson George Georges - UW/FHCRC

<u>Study Monitors</u> •Linda Griffith - NIAID/NIH Peter Sayre – ITN

 Kaitlyn McConville – Rho James Rochon - Rho

NIAID National Institute of Allergy & Infectious Diseases

Supported and conducted by Immune Tolerance Network (ITN), and sponsored by NIAID, NIH, Bethesda, MD USA

T cell repertoire following autologous stem cell transplantation in multiple sclerosis

- High-throughput deep TCR sequencing used to assess millions of individual TCRs per patient sample (baseline, 2 months and 12 months)
- Found that HSCT has distinctive effects on CD4+ and CD8+ T cell repertoires.
- In CD4+ T cells, dominant TCR clones present before treatment were hard to detect following reconstitution, and patients largely developed a new repertoire.
- In contrast, dominant CD8+ clones were not effectively removed, and the reconstituted CD8+ T cell repertoire was created by clonal expansion of cells present before treatment.
- Patients who failed to respond to treatment had less diversity in their T cell repertoire early during the reconstitution process.

Muraro et al; JCI 2014

inensi ikanse isirak

Association of Autologous HSCT with Neurological Disability in Patients with RRMS: Pretransplant patient characteristics (N=145)

Men	60 (41%)
Women	85 (59%)
Relapsing-remitting	118 (81%)
Secondary Progressive	27 (19%)
18-25	11 (8%)
26-35	55 (38%)
36-45	56 (38%)
46-60	23 (16%)
2-3	86 (59%)
4-5	52 (36%)
>6	7 (5%)
	Men Women Relapsing-remitting Secondary Progressive 18-25 26-35 36-45 46-60 2-3 4-5 4-5 >6

Burt et al, JAMA. 2015;313(3):275-284.

Association of Autologous HSCT with Neurological Disability in Patients with RRMS: Pretransplant patient characteristics (N=145) (cont'd)

Relapses	0	31 (21%)
	1	32 (22%)
	2	57 (40%)
	>2	25 (17%)
Baseline disability	<4	66 (46%)
	4-6	61 (42%)
	>6	18 (12%)
Gad-enhancing lesions	0	61 (42%)
	1-2	40 (28%)
	3-4	16 (11%)
	>4	28 (19%)

Burt et al, JAMA. 2015;313(3):275-284.

Association of Autologous HSCT with Neurological Disability in Patients with RRMS

Treatment:

Mobilization: Cyclophosphamide 2 g/m2 + G-CSF Conditioning: Cyclophosphamide 200 mg/kg

rATG (129 pts) or alemtuzumab (22 pts)

+

Alemtuzumab: 22.7% ITP/hypothyroidism/hyperthyroidism

Treatment related mortality: 0%

Burt et al, JAMA. 2015;313(3):275-284.

JAMA. 2015;313(3):275-284.

Association of Nonmyeloablative Hematopoietic Stem Cell Transplantation With Neurological Disability in Patients With RRMS: Survival

JAMA. 2015;313(3):275-284.

Conclusion

- Long-term outcomes in relapsing-remitting MS patients after high-dose immunochemotherapy and autologous HCT was comparable in the North American studies (approx. 70% EFS).
- 2. Improvement in EDSS probably dependent on EDSS entering the study.
- 3. Effective suppression of relapses.
- 4. High-dose immunochemotherapy was well-tolerated.