Table S1. Full Search Strategy

Database	Search
AMED, CINHAL (via	S1 (MH "Multiple Sclerosis")
EBSCO)	S2 "multiple sclerosis"
	S3 "MS""
	S4 "demyelinat*"
	S5 S1 OR S2 OR S3 OR S4
	S6 (MH "Dancing+")
	S7 (MH "Dance Therapy")
	S8 "danc*"
	S9 "ballet"
	S10 "ballroom"
	S11 "tango"
	S12 "jazz"
	S13 "Zumba"
	S14 "movement to music"
	S15 S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12
	S16 S5 AND S15
	Expanders: Apply equivalent subjects
	\rightarrow AMED: 10
	\rightarrow CINHAL: 60
	S1 Multiple Sclerosis/
	S2 multiple sclerosis.mp.
	S3 MS.mp.
	S4 demyelinat*.mp.
	S5 S1 OR S2 OR S3 OR S4
	S6 exp Dancing/
	S7 exp Dance Therapy/

	S8 danc*.mp. S8 ballet.mp. S10 ballroom.mp. S11 tango.mp. S12 jazz.mp. S13 zumba.mp. S14 movement to music.mp. S15 S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 S16 S5 AND S15 $\rightarrow 91$
Web of Science (Core Collection)	(TS=("multiple sclerosis" OR "MS" OR "demyelinat*")) AND TS=((danc* OR "ballet" OR "ballroom" OR "tango" OR "jazz" OR "Zumba" OR "movement to music")) $\rightarrow 216$
ProQuest (Health \& Medical Collection, Nursing \& Allied Health Database, and PsycINFO)	S1 (noft("multiple sclerosis") OR TI,AB("MS") OR noft("demyelinat*")) S2 (noft(danc*) OR noft("ballet") OR noft("ballroom") OR noft("tango") OR noft("jazz") OR noft("zumba") OR noft("movement to music")) S3 S1 AND S2 \rightarrow Health \& Medical Collection: 173 \rightarrow Nursing \& Allied Health Database: 84 \rightarrow PsychINFO: 50
Scopus	(TITLE-ABS-KEY ("multiple sclerosis" OR "demyelinat*")) AND (TITLE-ABS-KEY (danc* OR "ballet" OR "ballroom"

	OR "tango" OR "jazz" OR "zumba" OR "movement to music")) $\rightarrow 50$

Table S2. Complete Characteristics of Included Studies

Author, Date, Design	Sample Characteristics (size ${ }^{\text {a }}$, sex, age, MS type, disability status, disease duration)	Intervention Characteristics (type, delivery mode, dosage, frequency, duration, adverse events, adherence, dropouts)	Outcome Measures	Main Findings	Quality
Randomized Controlled Trial					
```Young et al,}\mp@subsup{}{}{35 2019; proof-of-concept trial```	81 (self-reported diagnosis);   66F/15M;   Mean age dance group, $49.67 \pm 9.40$ years;   MS type, NR;   PDDS range, 0-6 (no disability - bilateral support);   Mean disease duration of dance group, $13.56 \pm 8.26$ years	Movement-to-music (M2M, n = 27);   Group, in-person;   60 minutes x $3 /$ week for 12 weeks;   AE (study-related), 1;   Adherence, 53.7\%   Lost to follow-up, $n=3$   Adapted yoga (AY, $\mathrm{n}=$ 26);   Group, in-person;   60 minutes x 3/week for 12 weeks;   AE (study-related), 0 ;	Primary:   Mobility (TUG)   Walking endurance (6MWT)   Lower-extremity functional strength (5XSTS)   Secondary:   Fatigue and pain   (PROMIS Fatigue and   Pain Interference Short   Forms 8a)	Primary:   TUG   Pre M2M group: $12.3 \pm 12.4$   Post M2M group: $12.2 \pm 14.1$   Group difference $(P=.03)^{*}$   Post hoc, between M2M-WC ( $P=.01$ )*   Cohen's $d=0.7$, medium ES   Post hoc, between AY-WC $(P=.09)^{\circ}$   6MWT   Pre M2M group: $341.7 \pm 110.1$   Post M2M group: $383.9 \pm$   134.1   Group difference accounting for PDDS ( $P=.04$ )*   Post hoc, between M2M-WC ( $P=.04$ )*	Moderate (60\% quality criteria met)


		Adherence, 67.7\%   Lost to follow-up, $\mathrm{n}=5$   Waitlist control (WC, n = 28);   Biweekly, educational newsletters;   Lost to follow-up, $n=5$		Cohen's $d=0.6$, medium ES   Post-hoc, between AY-WC ( $P=.25$ )   5XSTS   Group difference $(P=.41)$   Secondary:   PROMIS-Fatigue   Group difference accounting for PDDS $(P=.08)^{\circ}$   Post hoc, between M2M-WC ( $P=.09)^{\circ}$   Cohen's $d=0.49$, medium ES   PROMIS-Pain   Group difference $(P=.70)$	
Nonrandomized Studies					
Mandelbaum et al, ${ }^{38}$ 2016; uncontrolled, before-and-after study	8 (confirmed diagnosis);   5F/3M;   Age range, 29-63 years;   7 RRMS/1 SPMS;   PDDS range, 0-3 (no disability-walking disability);	Salsa dance;   Group, in-person;   60 minutes x $2 /$ week for 4 weeks;   AE, 0 ;   Adherence, 98\%   Dropouts, 0	Gait (T25-FW, MSWS12)   Balance (DGI, BBS)   Mobility (TUG)   Balance confidence   (ABC)   Self-efficacy (MSSS)	Pre-post, within group   TUG $(P=.02)^{*}$   Pre: $9.5(8.6 ; 10.0)$   Post: $8.5(8.1 ; 8.9)$   GLTEQ ( $P=.01$ )*   Total minutes/week   Pre: 250.0 ( $25.0 ; 447.5$ )   Post: 450.0 (305.0; 731.3)   Moderate exercise (min)   Pre: 70.0 ( $0.0 ; 338.8$ )	Moderate (60\% quality criteria met)


Disease duration range, 122 years		Motivation for PA (MPAM-R)   Physical activity (GLTEQ)   MS symptom checklist (MS Symptoms)   Neurological disability (PDDS)	Post: 325.0 (240.0; 492.5)   Total leisure activity (METs)   Pre: 28.0 (4.5; 50.8)   Post: 43.0 (30.0; 67.5)   MS Symptoms $(P=.05) *$   Pre: $5.0(2.0 ; 6.8)$   Post: 5.5 (2.3; 8.5)   $\underline{\mathrm{DGI}}(P=.09)^{\circ}$   $\underline{\mathrm{ABC}}(P=.09)^{\circ}$   T25-FW, MSWS-12, BBS,   MSSS, PDDS, MPAM-R, ( $P>0.1$ )   Pre 3-month follow-up   $\underline{\mathrm{DGI}}(P=.04)$ *   Pre: 22.5 (20.3; 23.8)   3-month: 24.0 (22.3; 24.0)   TUG $(P=.05)^{*}$   Pre: 9.5 ( $8.6 ; 10.0$ )   3-month: 8.3 (8.0; 8.9)   MSWS-12 $(P=.05)^{*}$   Pre: 29.2 (1.0; 59.9)   3-month: 17.7 (1.6; 41.7)   GLTEQ $(P=.07)^{\circ}$	


				T25-FW, ABC, BBS, MSSS,   MS Symptoms, MPAM-R,   PDDS ( $P>.1$ )   Pre 6-month follow-up   All outcomes ( $P>.1$ )	
Scheidler et al, ${ }^{39}$ 2018; uncontrolled, before-and-after study	8 (confirmed diagnosis); 8F/0M;   Age range, 36-65 years;   All RRMS;   EDSS range, 2.5-6.5 (mild disability-moderate disability);   Disease duration, NR	Targeted ballet;   Group, in-person;   60 minutes x $2 /$ week for 16 weeks;   AE, 0 ;   Adherence, preset criteria of over $94 \%$ of classes   Dropouts, 2	Ataxia (ICARS and smoothness of movement in 5-meter walk from motion capture data [UniLateral S-index])   Balance (MBT and center of pressure measurements of balance in step-to-stand task [GBM])	Pre-post, within group ICARS   Pre: $19.6 \pm 6.3$   Post: $8.19 \pm 6.6$   ( $P<.001$ )*   Cohen's $d=2.6$, huge ES   Unilateral S-index, right   Pre: $-81.7 \pm 10.9$   Post: $-75 \pm 8.7$   ( $P=.028$ )*   Cohen's $d=0.87$, large ES   Unilateral S-index, left   Pre: $-78.6 \pm 10.3$   Post: $-73.2 \pm 7.5$   ( $P=.027$ )*   Cohen's $d=0.87$, large ES   MBT   Pre: $16.6 \pm 5.0$   Post: $23.6 \pm 2.6$   ( $P=.001$ )*   Cohen's $d=1.2$, very large ES   GBM, back direction	Moderatehigh ( $80 \%$ quality criteria met)


				Pre: $-4.82 \pm 6.9$   Post: $-17 \pm 10.4$ $(P=.025)^{*}$   Cohen's $d=.68$, medium ES   GBM, right, left, and front ( $P>.05$ )	
Ng et al, ${ }^{37}$ 2020; controlled, before-and-after study	13 (confirmed diagnosis);   12F/1M;   Age range, 40-59 years;   12 RRMS/1 PPMS;   PDDS range, 1-4 (mild disability-cane use);   Disease duration, NR	Ballroom dance ( $\mathrm{n}=$ 7);   Group, in-person;   60 minutes x 2 /week for 6 weeks;   AE, 0;   Adherence, all complete at least $75 \%$ sessions (preset criteria)   Dropouts, 0   No-dance control group ( $\mathrm{n}=6$ )	HR-QoL (PROMIS-   GH)   Self-efficacy (MSSE)   MS Exercise Selfefficacy   Fatigue (FIS)   Depression (BDI)   Balance (BBS, DGI)   Mobility (TUG)   Physical function   (MSFC: 9-HPT, T25-   FW, PASAT)   Exercise intensity (HR, RPE)	Within group, dance group:   PROMIS-GH ( $P=.03$ )*   Pre: $40(29,45)$   Post: $42(34,48)$   $\underline{\operatorname{MSFC}}(P=.03)^{*}$   Pre: $0.25(-1.33,0.35)$   Post: $0.47(-0.90,0.55)$   PASAT $(P=.03)^{*}$   Pre: $49(31,55)$   Post: $55(45,60)$   $\underline{\mathrm{FIS}}(P=.07)^{\circ}$   $\underline{\mathrm{BDI}}(P=.07)^{\circ}$   BBS $(P=.07)^{\circ}$   TUG $(P=.08)^{\circ}$   MSSE-Control ( $P=.46$ ), MSSE-Function ( $P=.18$ ), MS Exercise Self-efficacy ( $P=$	Moderatehigh ( $80 \%$ quality criteria met)


				$\begin{aligned} & .21), \text {, DGI }(P=.11), \underline{\text { 9HPT }}(P= \\ & .35), \underline{\text { T25-FW }}(P=.53) \end{aligned}$   Within group, control group:   All outcomes ( $P>.1$ )   Between dance \& control groups: PROMIS-GH $\overline{(P \leq .05)^{*}}$   MSFC $\overline{(P \leq .05)^{*}}$   PASAT $(P \leq .05)^{*}$	
Van Geel et al, ${ }^{36}$ 2020;   controlled, pilot, before-and-after study	17 (confirmed diagnosis); 16F/1M;   Age range, 29-65 years;   MS Type, NR;   Disability status, cane ( $\mathrm{n}=$ 1), walker ( $\mathrm{n}=2$ ), crutch ( $\mathrm{n}=1$ );   Disease duration range, 3 21 years	Choreo-based participatory dance ( n $=7$ );   Group, in-person;   90 minutes x $2 /$ week for 10 weeks;   AE, NR;   Adherence, NR;   Dropouts, 1	Primary:   Fatigue (MFIS, FSS,   DWI, CFI)   Secondary:   Physical capacity   (6MWT, T25-FW,   ABC, DGI, 5TSTS,   MSWS-12, 9HPT)   Sensory function   (EmNSA)   Cognitive capacity   (SMDT, PASAT)	Within group, dance group.   Primary:   MFIS $(P=.03)^{*}$   Pre: $43(19 ; 48)$   Post: $26(6 ; 49)$   MFIS physical $(P=.02)^{*}$   Pre: $19(8 ; 24)$   Post: 13 (3; 20)   FSS $(P=.31)$, DWI $(P=.87)$,   CFI ( $P=.25$ )   Secondary: $5 \text { STS }(P=.04)^{*}$	Moderate (60\% quality criteria met)


		Control art group ( $\mathrm{n}=$ 10);   Group, in-person;   Approximately 90 minutes x $2 /$ week for 10 weeks;   AE, NR;   Adherence, NR	Dual Task Performance   HR-QoL (MSIS-29, SF-36)   Leg coordination	$\underline{\mathrm{ABC}}(P=.04)^{*}$   MSWS-12 $(P=.046)^{*}$   9HPT-dominant ( $P=.02$ )*   DT - Cognitive ( $P=.03$ )*   Leg coordination $(P=.046)^{*}$   PASAT $(P=.068)^{\circ}$   $\underline{\text { MSIS-29 }}(P=.063)^{\circ}$   $\underline{\text { DT Cost }}(P=.063)^{\circ}$   Within group, art group:   Primary:   MFIS $(P=.005)^{*}$   Pre: $48(41 ; 54)$   Post: $42(28 ; 47)$   MFIS, physical ( $P=.01)^{*}$   Pre: $25(20 ; 30)$   Post: $20(13 ; 23)$   FSS $(P=.72)$, DWI $(P=.74)$,   CFI $(P=.45)$   Secondary:   SDMT ( $P=.04$ )*   DT - Cognitive $(P=.02)^{*}$	


				$\underline{\text { PASAT }}(P=.085)^{\circ}$	
```Camacho et al, 40 2021; uncontrolled, before-and-after study```	5 (confirmed diagnosis);   4F/1M;   Age range, 38-64 years;   All RRMS;   EDSS, mean of $3.5 \pm 1.5$   (mild-moderate   disability);   Disease duration, NR	Targeted ballet;   Group, in-person;   60 minutes x 2 /week for 12 weeks;   AE, 0;   Adherence, mean hours of $21.8 \pm 4.65$ (preset criteria of 24 hours)   Dropouts, 0	Ataxia (ICARS and smoothness of movement in 5-meter walk from motion capture data [Bilateral S-index])   Balance (MBT)	Pre-post, within group:   ICARS $\overline{(P=.01) *}$   Hedge's $g=-1.21$, large ES   MBT $(P=.015)^{*}$   Hedge's $g=1.08$, large ES   Bilateral S-index $(P=.0499)^{*}$   Hedge's $g=.69$, medium ES	Moderate (60\% quality criteria met)
Quantitative Descriptive Studies					
Salgado and de Paula Vasconcelos, ${ }^{43}$ 2010; case report	1 (confirmed diagnosis); Female; Age, 45 years; RRMS; EDSS, 3 (moderate disability); Disease duration, 10 years	Dance/movement therapy; 1 on 1, in-person; 100 minutes $\times 2$ / week for 20 weeks; AE, NR; Adherence and dropouts, N/A	Neurological disability (EDSS, MRD, NRS)	Pre-post changes EDSS Pre: 3 Post: 2 (-1) MRD Pre: 6 Post: 5 (-1) NRS Pre: 64 Post: 71 (+7)	Low (40\% quality criteria met)

$\begin{aligned} & \text { Charlton et al, }{ }^{42} \\ & 2010 ; \\ & \text { evaluation } \end{aligned}$	11 (confirmed diagnosis); 11F/0M; Age range, 32-70 years; MS type, NR; Disability status, ambulatory without assistance ($\mathrm{n}=7$), use walkers ($n=4$); Disease duration, NR	Jazzercise; Group, in-person; 45 minutes x 2 / week for 16 weeks; AE, 0; Adherence, 67-75\% Dropouts, $\mathrm{n}=3$	Questionnaire evaluating participantreported changes in balance, confidence, coordination, energy, flexibility, mood, and strength	Percentage agreed or strongly agreed outcome improved postintervention: 56% balance and coordination 67% strength and flexibility 78% confidence 100% energy \& mood 100% enjoyment \& satisfaction with classes \& motivation to continue with classes	Low (40\% quality criteria met)
$\begin{aligned} & \text { Lachance et al, }{ }^{41} \\ & 2021 ; \\ & \text { single-case } \\ & \text { experimental } \\ & \text { study } \end{aligned}$	1 (confirmed diagnosis); +6 other people with reduced mobility Female; Age, 60 years; MS Type, NR; Disability status, walks with a limp; Disease duration, NR	Clinical dance therapy; Group, in-person; 90 minutes x 2 / week for 12 weeks; AE, NR; Adherence, 71\% Dropouts, N/A	Primary: Mobility (FSST) Secondary: Mobility (MDRT- behind, MBT)	Tau-U analysis Primary: FSST $\overline{(P=.86)}$ Tau-U: 0.08 Secondary: MDRT-behind $(P=.034)^{*}$ Tau-U: -1, Very large ES MBT $\overline{(P=.034)^{*}}$ Tau-U: 1, Very large ES	Moderate (60\% quality criteria met)

Ares-Benítez et al, ${ }^{44}$ 2021; case report	1 (confirmed diagnosis); Female; Age, 49 years; RRMS; EDSS, 5 (moderate disability); Disease duration, 24 years	Spanish dance \& physiotherapy; 1 on 1, in-person; 60 minutes x $5 /$ week for 3 weeks; AE, NR; Adherence \& dropouts, N/A	Spasticity (MAS) Balance (BBS) Walking endurance (6MWT) Spatiotemporal gait patterns (Gaitrite) Muscle strength (MMT) Range of motion (goniometry)	Pre-post changes BBS Pre: 30 Post: 55 (+25 points) 6MWT Pre: 427.24 m and $1.19 \mathrm{~m} / \mathrm{s}$ Post: 465 m and $1.46 \mathrm{~m} / \mathrm{s}$ (+37.76 m and $+0.27 \mathrm{~m} / \mathrm{s}$) MMT Ankle dorsiflexors, +2 points Ankle plantar flexors, +1 point Knee and hip muscles, no change MAS Sural triceps, -1 point Quadriceps, hamstrings, psoas \& adductors, no change Spatiotemporal gait parameters, left lower limb, right lower limb Stride time (s), $-0.04,-0.02$ Step length (cm) $,+12.6,+13.6$ Stride length (cm) $,+26.4,+26.1$ Base of support (cm), $+3.9,+2.8$ Single support (\%GC), +5.2 , +3.3 Double support (\%GC), -10.2, -9.8 Balance (\%GC), $+3.3,+5.4$	Low (40\% quality criteria met)

				Speed (cm/s), +24.8 Cadence (steps/minute), +4.6	
Mixed Methods Studies					
$\begin{aligned} & \text { Mason, }{ }^{45} \text { 2020; } \\ & \text { thesis } \end{aligned}$	5 (self-reported diagnosis); Sex, age, MS type, disability status, and disease duration, NR	Participatory dance; Group, in-person; 75 minutes x $1 /$ week for 6 weeks; AE, NR; Adherence, 93\% Dropouts, $\mathrm{n}=0$	Quantitative Self-efficacy (MSSE- 10) Qualitative Exit questionnaire	Quantitative Pre-post, within group MSSE-10 Pre: 880 Post: 906 $(P=.225)$ Qualitative Participants reported experiencing improvements in self-efficacy, self-confidence \& physical well-being.	Low (20\% quality criteria met)
Whiteside and Ruckert, ${ }^{46}$ 2020; evaluation	22 (self-reported diagnosis) including $\mathrm{n}=$ 12 (AM group) and $\mathrm{n}=10$ (PM group) 21F/1M; Age, NR; MS type, NR; Disability status, multiple walking aids, wheelchairs ($\mathrm{n}=2$); Disease duration, NR	Participatory dance; Group, in-person; 75 minutes x 1/week for 10 weeks; AE, NR; Adherence \& dropouts, N/A (drop-in format)	Quantitative Fatigue (FSS) Balance confidence (ABC) Gait (MSWS-12) Qualitative participant observation	Quantitative Pre-post, within group ABC AM group ($P>.05$) PM group $(P=.07)^{\circ}$ FSS AM group $(P=.02)^{*}$ Pre: 5.4 Post: 4.7 PM group $(P=.06)^{\circ}$ MSWS-12 AM group $(P=.06)^{\circ}$	Moderate (60\% quality criteria met)

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { PM group (P>.05) } \\ \text { Qualitative }\end{array} \\ \text { Participants reported } \\ \text { experiencing improvements in } \\ \text { body confidence \& awareness, } \\ \text { well-being, belonging \& } \\ \text { quality of life. }\end{array}\right)$

5STS, Five Times Sit-to-Stand; 6MWT, 6-Minute Walk Test; 9HPT, 9-Hole Peg Test; ABC, Activities-Specific Balance Confidence Scale; AE, adverse events; BBS, Berg Balance Scale; BDI, Beck Depression Inventory; CFI, Cognitive Fatigability Index; DGI, Dynamic Gait Index; DT, dual task; DWI, Distance Walked Index; EDSS, Expanded Disability Status Scal;, EmNSA, Erasmus modified Nottingham Sensory Assessment; ES, effect size; F, female; FIS, Fatigue Impact Scale; FSS, Fatigue Severity Scale; FSST, Four Square Step Test; GC, gait cycle; GLTEQ, Godin Leisure Time Exercise Questionnaire; HR, heart rate; HR-QoL, health-related quality of life; ICARS, International Cooperative Ataxia Rating Scale; M, male; MAS, Modified Ashworth Scale);MBT, MiniBalance Evaluation Systems Test; MDRT, Multi-Directional Reach Test; MFIS, Modified Fatigue Impact Scale; MMT, DanielsWorthingham Manual Muscle Test; MPAM-R, Motives for Physical Activity Measure-Revised; MRD, Minimal Record Disability; MSFC, MS Functional Composite Score; MSIS-29, MS Impact Scale-29; MSSE, Multiple Sclerosis Self-efficacy Scale; MSSS, MS Self-Efficacy Scale; MSWS-12, 12-Item Multiple Sclerosis Walking Scale; N/A, not applicable; NR, not reported; NRS, Scripps Neurologic Rating Scale; PASAT, Paced Auditory Serial Addition Test; PDDS, Patient Determined Disease Steps scale; PPMS, primary progressive MS; PROMIS-GH, Patient-Reported Outcomes Measurement Information System Global Health; RPE, rating of perceived exertion; RRMS, relapsing-remitting MS; T25-FW, Timed 25 -Foot Walk Test; TUG, Timed Up and Go; SF-36, Short Form Health Survey; SDMT, Symbol Digit Modalities Test; SPMS, secondary progressive MS.
${ }^{\text {a }}$ All people with MS unless otherwise specified.

* $P \leq .05$
${ }^{\circ}$ trend towards significance $(P<.1)$

Table S3. Examples of Qualitative Data

Themes	Sample Qualitative Data
Theme 1: Body awareness and physical confidence	"When I fell, again in the same place during the week, this time instead of battering and bruising and injuring myself, I kept on my feet because I automatically did that backward, straight leg, and it kept me on my feet. It then let me reach forward and hold onto the sink, so I could get my balance back.""46
	"I have noticed that I am more confident in trying things that I thought I couldn't do, or that I knew I would end up exhausted after, like running or stretching.""45
Theme 2: Psychological well- being	"I enjoy the class. Sometimes I end the class feeling tired but in a better and more energetic mood. In those days where I felt tired even before starting the class, I knew that I would not be forced to do more than I was able to.""5
Theme 3: Sense of belonging	"You're going somewhere where you don't have to explain as much. Because I don't mind going in and saying 'this is what my symptoms are; this is what I find difficult; this is what I want to get out of it,' but it's more just that when I'm saying that, I don't then have to explain what that actually means on top of having to have that initial explanation."
	"The class is a totally nonjudgmental atmosphere, so self- conscious inhibition is minimal."45
Theme 4: Social relationships	"When you feel the heat and it is heat that comes into your body...you're smiling; you're feeling warmer. And I think when you see each other and we're passing and you're smiling, I love

	that part when you're just doing the dancing with each other and that's lovely.""6
"This image reflects union, and it is what I have felt with my	
daughter in the last activity of embracing slowly. It is something	
we never do and should being such a simple and good gesture, we	
should do it more often." 47 (translated from Spanish to English)	

Table S4. Mixed Methods Appraisal Tool (MMAT) Quality Assessment

Studies	Qualitative studies					Randomized controlled trials					Nonrandomized studies					Quantitative descriptive studies					Mixed-methods studies					MMAT score	Overall quality
Author, Date, Design	1.1	1.2	1.3	1.4	1.5	2.1	2.2	2.3	2.4	2.5	3.1	3.2	3.3	3.4	3.5	4.1	4.2	4.3	4.4	4.5	5.1	5.2	5.3	5.4	5.5		年
Baeza and Fuertes, ${ }^{47} 2022$	Y	Y	CT	N	N																					**	
Young et al, ${ }^{35}$ 2019; proof-ofconcept trial						Y	Y	N	Y	N																***	Modera意
Mandelbaum et al, ${ }^{38}$ 2016; uncontrolled, before-and-after study											Y	Y	CT	N	Y											***	
Scheidler et al, ${ }^{39}$ 2018; uncontrolled, before-and-after study											Y	Y	Y	Y	CT											****	Moderatehigh
Ng et al, ${ }^{37}$ 2020; controlled, before-and-after study											N	Y	Y	Y	Y											****	
Van Geel et al, ${ }^{36}$ 2020; controlled, before-and-after study											Y	Y	Y	N	CT											***	
Camacho et al, ${ }^{40}$ 2021; uncontrolled, before-and-after study											CT	Y	Y	Y	CT											***	Moderate
Salgado and de Paula Vasconcelos, ${ }^{43}$ 2010; case report																CT	N	Y	Y	CT						**	Low $\stackrel{\smile}{5}$
Charlton et al, ${ }^{42}$ 2010; survey																N	N	N	Y	Y						**	Low

