
Innovations in Multiple Sclerosis Care:  
The Impact of Arti�cial Intelligence via Machine 
Learning on Clinical Research and Decision-Making
Jacob Cartwright, MS; Kristof Kipp, PhD; and Alexander V. Ng, PhD, FACSM

CE ARTICLE

2023 SERIES NO. 5

CE INFORMATION
ACTIVIT Y AVAILABLE ONLINE:  To access the ar t icle and 
evaluation online, go to https://www.highmarksce.com/mscare.

TARGET AUDIENCE:  The target audience for this activity is 
physicians, advanced practice clinicians, nursing professionals, 
mental health professionals, social workers, and other health care 
providers involved in the management of individuals with multiple 
sclerosis (MS).

LEARNING OBJECTIVE:
1.  Recognize differences between supervised and unsupervised 

learning to better understand and evaluate their strengths, 
limitations, and relevance to the diagnosis and care for individuals 
with MS.

2.  Describe how machine learning techniques can assist with 
MS diagnosis, personalize treatment plans, and optimize 
rehabilitation strategies for improved patient outcomes in order 
to be able to apply this technology to patient care.

ACCREDITATION:

In support of improving patient care, this 
activity has been planned and implemented by 
the Consortium of Multiple Sclerosis Centers 
(CMSC) and Intellisphere, LLC. The CMSC is 
jointly accredited by the Accreditation Council 

for Continuing Medical Education (ACCME), the Accreditation 
Council for Pharmacy Education (ACPE), and the American Nurses 
Credentialing Center (ANCC), to provide continuing education for 
the healthcare team.

This activity was planned by and for the health  
care team, and learners will receive .5 Interprofessional 
Continuing Education (IPCE) credit for learning and 
change.

PHYSICIANS: The CMSC designates this journal-based activity 
for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians 
should claim only the credit commensurate with the extent of their 
participation in the activity.

NURSES: The CMSC designates this enduring material for 1.0 
contact hour of nursing continuing professional development 
(NCPD) (none in the area of pharmacology).

PSYCHOLOGISTS: This activity is awarded 1.0 CE credits.

SOCIAL WORKERS: As a Jointly Accredited Organization, the 
CMSC is approved to offer social work continuing education by the 
Association of Social Work Boards (ASWB) Approved Continuing 
Education (ACE) program. Organizations, not individual courses, 
are approved under this program. Regulatory boards are the 
final authority on courses accepted for continuing education 
credit. Social workers completing this course receive 1.0 general 
continuing education credits.

DISCLOSURES: It is the policy of the Consortium of Multiple 
Sclerosis Centers to mitigate all relevant financial disclosures 
from planners, faculty, and other persons that can affect the 
content of this CE activity. For this activity, all relevant disclosures 
have been mitigated.

Francois Bethoux, MD, editor in chief of the International 
Journal of MS Care (I JMSC) ,  and Alissa Mary Willis, MD, 
associate editor of IJMSC, have disclosed no relevant financial 
relationships. Authors Jacob Cartwright, BSc; Kristof Kipp, PhD; 
and Alexander V. Ng, PhD, have disclosed no relevant financial 
relationships. 

The staff at IJMSC, CMSC, and Intellisphere, LLC who are in a 
position to influence content have disclosed no relevant financial 
relationships. Laurie Scudder, DNP, NP, continuing education 
director at CMSC, has served as a planner and reviewer for this 
activity. She has disclosed no relevant financial relationships.

METHOD OF PARTICIPATION:
Release Date: September 1, 2023; Valid for Credit through: September 
1, 2024

To receive CE credit, participants must:
(1)  Review the continuing education information, including learning 

objectives and author disclosures.
(2) Study the educational content.
(3)  Complete the evaluation, which is available at  

https://www.highmarksce.com/mscare.

Statements of Credit are awarded upon successful completion of 
the evaluation. There is no fee to participate in this activity.

DISCLOSURE OF UNLABELED USE: This educational activity 
may contain discussion of published and/or investigational 
uses of agents that are not approved by the FDA. The CMSC 
and Intellisphere, LLC do not recommend the use of any agent 
outside of the labeled indications. The opinions expressed in the 
educational activity are those of the faculty and do not necessarily 
represent the views of the CMSC or Intellisphere, LLC.

DISCLAIMER: Participants have an implied responsibility to use 
the newly acquired information to enhance patient outcomes 
and their  own professional development.  The information 
presented in this activity is not meant to serve as a guideline for 
patient management. Any medications, diagnostic procedures, 
or treatments discussed in this publication should not be used 
by clinicians or other health care professionals without first 
evaluating their patients’ conditions, considering possible 
contraindications or risks, reviewing any applicable manufacturer’s 
product information, and comparing any therapeutic approach 
with the recommendations of other authorities.

Vol. 25 | No. 5 | September/October 2023     233International Journal of MS Care

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://m

e
rid

ia
n
.a

lle
n
p
re

s
s
.c

o
m

/ijm
s
c
/a

rtic
le

-p
d
f/2

5
/5

/2
3
3
/3

2
6
2
3
9
9
/i1

5
3
7
-2

0
7
3
-2

5
-5

-2
3
3
.p

d
f b

y
 g

u
e
s
t o

n
 1

9
 S

e
p
te

m
b

e
r 2

0
2
3



234     Vol. 25 | No. 5 | September/October 2023 International Journal of MS Care

Cartwright et al

 

 

 

 

A
rtificial intelligence (AI) refers to a broad class of 

algorithms that, as the name suggests, result in dis-

plays of intelligence by machines.1 Contemporary 

AI manifests in many forms, from self-learning chatbots to 

simple linear regressions. If the exact de�nition of AI seems 

nebulous and esoteric, that is because the exact de�nition of 

AI is nebulous and esoteric. As a writer described it, “… it’s 

part of the history of the �eld of arti�cial intelligence that 

every time somebody �gured out how to make a computer do 

something—play good checkers, solve simple but relatively 

informal problems—there was a chorus of critics to say, but 

that’s not thinking.”2 It is this steadily moving set of goalposts 

that makes AI so hard to de�ne. 

Consequently, there is no consensus concerning the distinc-

tion between AI and machine learning (ML); some individuals 

consider both terms synonymous, and others consider ML to 

lack su�cient complexity to constitute AI. A third group con-

siders ML to be a subcategory of AI. In the latter case, the range 

of AI is vast: Expert systems codify the knowledge of experts,3 

arti�cially intelligent chatbots simulate conversation,4 and ML 

�nds patterns in data.1 Although AI accurately describes each 

of these domains, for clarity, subsequent discussion uses the 

most precise term.

Expert systems can help clinicians diagnose lesions and 

white matter abnormalities resulting from multiple sclerosis 

(MS) via magnetic resonance imaging (MRI) by o�ering plaus-

ible diagnoses with con�dence levels.5 In contrast, AI chatbots 

are versatile and are used for many tasks, including improving 

language (both code and narrative paragraphs), inspiring paths 

for analysis, and solving mathematical equations.4 Finally, ML, 

the focus of this review, consists of iterative algorithms adept 

at exploiting patterns in data to group observations, establish 

class boundaries, or predict continuous variables.

Although not all speci�c to MS, numerous recent reviews 

have highlighted the importance of ML across the health care 

sector.6-8 This narrative review explores ML algorithms and 

their use in MS research, including disease detection from 

serum biomarkers and medical imaging, discovery of clusters 

of pathology, analysis of movement, inference of cognitive 

impairment, and prediction of disease progression.

Multiple Sclerosis

A chronic neurodegenerative disease predominantly a�ecting 

women, MS is characterized by demyelination of nerves in the 

brain and spinal cord9 and often follows a pattern of cyclical 

periods of remission and relapse, ultimately with progression.9 

Although the exact etiology is unknown,9,10 several genes 

“… including those for protein tyrosine phosphatase (CD45), 

the IL-7 receptor, and CD24”10 have been linked to susceptibility 

to developing MS, in addition to environmental factors, includ-

ing Epstein-Barr virus,11 increased latitude,12 and decreased lev-

els of vitamin D.13 Common symptoms in individuals with MS 

include symptomatic fatigue, muscle weakness, impaired gait, 

spasticity, ataxia, dysarthria, and vision loss.10

Because MS is such a heterogeneous disease,  with  

di�erently presenting preclinical stages—including a seem-

ingly nonspecific prodrome14—and phenotypes (eg, relaps-

ing-remitting, progressive),9 advanced techniques are required 

to investigate certain aspects of its pathophysiology and treat-

ment. Use of ML enables analyses that would be impractical or 

impossible through traditional methods. Possible applications 

are limitless, spanning from serology-based disease diagnosis 

to uncovering the prognostic value of novel subgroupings 

of disease pathology. Consequently, ML can enhance disease 

diagnosis, monitoring, prognosis, precision medicine, and the 

overall management of MS.

Machine Learning

Algorithm Assessment

Machine learning is a process by which an algorithm itera-

tively alters a predictive or descriptive mathematical model to 

�t a data set. However, a model bespoke to speci�c data may 

not generalize well to new data. To address this, a data set 
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ABSTRACT
Artificial intelligence (AI) and its specialized subcompo-
nent machine learning are becoming increasingly popular 
analytic techniques. With this growth, clinicians and health 
care professionals should soon expect to see an increase in 
diagnostic, therapeutic, and rehabilitative technologies and 
processes that use elements of AI. The purpose of this review 
is twofold. First, we provide foundational knowledge that will 
help health care professionals understand these modern 
algorithmic techniques and their implementation for classi�-
cation and clustering tasks. The phrases arti�cial intelligence 
and machine learning are de�ned and distinguished, as are 
the metrics by which they are assessed and delineated. Sub-
sequently, 7 broad categories of algorithms are discussed, 
and their uses explained. Second, this review highlights 
several key studies that exemplify advances in diagnosis, 
treatment, and rehabilitation for individuals with multiple 
sclerosis using a variety of data sources—from wearable 
sensors to questionnaires and serology—and elements of AI. 
This review will help health care professionals and clinicians 
better understand AI-dependent diagnostic, therapeutic, and 
rehabilitative techniques, thereby facilitating a greater quality 
of care. 

Int J MS Care. 2023;25(5):233-241. doi:10.7224/1537-2073.2022-076
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ispartitioned into 2 or 3 eponymously named representative 

data sets: training, validation, and test sets. Models are trained 

on the training set before validation on the validation set, 

where parameters are further �ne-tuned to increase perfor-

mance. The optional test set allows for a �nal evaluation of the 

re�ned model on fresh, unseen data.

Machine learning can be split into 2 primary categories: 

supervised learning, in which the algorithm is trained to 

detect distinct classes or predict a continuous variable using 

prelabeled data, and unsupervised learning, in which the  

algorithm looks for patterns in data without direction.15  

Supervised learning. Classi�cation algorithms—algorithms 

that recognize certain types of observations from a larger collec-

tion—are assessed by their ability to categorize di�erent classes 

of observations in the validation or test set. The true-positive 

rate, sometimes called sensitivity or recall, is the proportion of 

true-positives to true-positives plus false-negatives. Similarly, 

the true-negative rate, sometimes called speci�city, is the ratio 

of true-negatives to true-negatives plus false-positives. Plotting 

the false-positive (1–speci�city) rate against sensitivity creates 

a receiver operating characteristic curve, and the area under 

the curve (AUC) is used as a gauge of success, where an AUC of 

1.0 indicates a perfectly discriminating algorithm (FIGURE 1).16 

Finally, the proportion of correctly labeled observations among 

all observations is known as accuracy.

Complementary to classi�cation is regression. Whereas the 

target variable in classi�cation is categorical, it is continuous 

in regression. In linear regression, for example, a vector is �t to 

data where the independent axis is predictive of the dependent 

axis. Although linear regression typically uses a closed-form 

solution (a solution calculated exactly using a �nite number 

of operations), it may also be calculated iteratively. In contrast, 

many other regression models are limited to iterative learning. 

Whereas classi�cation models are assessed by how well obser-

vations are placed in discrete categories, regression models 

are graded on how closely the predictions match the data. 

Standard assessment metrics include sum of squares, mean 

square error, and mean absolute error.17

Unsupervised learning. Unlike supervised learning, 

unsupervised learning aims to identify data patterns without a 

target variable’s guidance. Unsupervised learning is commonly 

used for dimensionality reduction and clustering (algorithmic 

grouping of similar data). Standard metrics include the Davies-

Bouldin index, the Dunn index, and the silhouette coe�cient.18 

Although these metrics may indicate the best-performing 

model, their cross–data set generalization ability is limited.

Algorithms

Classi�cation algorithms seek boundaries that best separate 

classes. For 2-dimensional data, this boundary may be a line; 

for 3-dimensional data, it is a plane. Humans can easily envi-

sion 1-, 2-, or 3-dimensional space; however, computer algo-

rithms can determine divisions in high-dimensional space. 

When separating data arranged in high-dimensional space, 

the dividing boundary is often a hyperplane—a subspace of 

exactly 1 dimension fewer than the space it divides.

Support vector machines are commonly used for both clas-

si�cation and regression. A support vector classi�er calculates 

the hyperplane that maximizes the distance between support 

vectors—the closest observations to a hyperplane—to maxi-

mize class-class difference (FIGURE 2).15 Similarly, a support 

vector regressor uses an analogous strategy to minimize the 

error of the support vectors, in this case, points outside the 

ε-tube—a predetermined space around the hyperplane. Thus, 

because variables in the ε-tube are not included in the error 

function, a support vector regression can be less sensitive to 
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FIGURE 1. Gauge of Performance by Model

Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) for 3 classi�cation models.  

An AUC of 1.00 indicates perfect classi�cation.
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clusters of observations relative to other algorithms, such as 

linear regression, that use all the data in their cost functions.19 

In addition, nonlinear hyperplanes can be used for both sup-

port vector classi�cation15 and regression19 by remapping data 

onto a new feature space.

Neural networks consist of linked units (nodes) that create a 

network akin to a brain.1,20 Each node may have multiple inputs 

and outputs; a weight coefficient determines the connection 

strength between nodes.1,20 Whereas a living brain may upregu-

late or downregulate excitatory or inhibitory neural transmit-

ters or receptors, a neural network can alter a weight coe�cient 

of a mathematical function (FIGURE S1).1 A neural network 

makes a prediction, and if the prediction is correct, the model 

remains unchanged. However, if the prediction is incorrect, 

coe�cient weights are adjusted.1,20 Neural networks consist of 

several layers: the input, the output, and 1 or more intermediary 

layers called hidden layers. Using multiple neurons and layers, 

neural networks analyze data points in relation to other data 

and are thus adept at pattern recognition.20

A decision tree classi�er develops branching rules to best 

explain divisions between classes (FIGURE S2).21 However, deci-

sion trees are particularly prone to over�tting, which reduces 

generalization outside the training data set.22 Over�tting can 

be mitigated by building multiple weaker models and combin-

ing them into a single, stronger ensemble model; techniques 

include gradient boosting23 and Bayesian ensemble learning.24 

Perhaps the most common ensemble algorithm for tree-based 

learning is the random forest classi�er, which builds multiple 

decision trees, each trained on a subset of data, later combined 

into a single model (FIGURE S3)22; an increased number of trees 

diminishes over�tting, thus increasing accuracy.21,22

In contrast to supervised learning, unsupervised learn-

ing algorithms make conclusions about which observations 

are most similar without human prespecification. Common  

unsupervised learning applications include dimensionality 

reduction and clustering.

Principal components analysis is a dimensionality reduction 

technique that transforms correlated variables into a smaller 

set of uncorrelated variables called principal components.25 

Principal components are vectors �t to data to explain the max-

imum amount of variance26; the vector with the highest variance 

is the �rst principal component. Subsequent principal compon-

ents are orthogonal to every previous component and explain 

the maximum amount of the remaining variance (FIGURE S4).27 

As each vector explains the maximum amount of remaining 

variance, each principal component explains less than all pre-

vious components. Principal components analysis helps show 

which variables most contribute to data variance and simpli�es 

high-dimensional data, thus increasing interpretability.

K-means is one of many clustering algorithms used to group 

observations by similarity. K-means clustering sets a predeter-

mined number of clusters, k, onto a feature space; the center 

of each is a point referred to as a centroid (FIGURE S5).26 Two 

steps are subsequently repeated until further iterations cease 

to minimize the sum of squares error within clusters: (1) each 

observation is assigned to the cluster with the closest cen-

troid17,26 and (2) the centroids are moved to minimize the sum 

of squares within the cluster. 

Subtype and Stage Inference (SuStaIn) is a novel and unorth-

odox clustering technique that clusters across disease stage, 

strati�ed by subtype.28 This is in contrast to k-means cluster-

ing, which may group individuals with low disease progression 

into 1 category and individuals with high disease progres-

sion into another with little delineation between subtypes. 

Importantly, SuStaIn may infer disease progression from both 

cross-sectional and longitudinal data. In SuStaIn, each feature 

A 

B 

X 

Y 
Boundary-support vector distance

Hyperplane

Support vector

Class 2

Class 1

FIGURE 2. Maximization of Class-Class Di�erence

Better (line A) and worse (line B) decision boundaries of a support vector classi�er as determined by the distance between the support vectors and the hyperplane.
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is converted to a z score normalized to a control population. 

Disease trajectory is linearly modeled in a piecewise fashion 

by connecting the expected z score at arbitrary time points; 

each calculated trajectory is considered a subtype (FIGURE S6). 

SuStaIn minimizes error for both subtype and trajectory for 

each observation.

ML in Clinical Decision-Making and Research
We examine the application of ML to 5 areas of MS patient care: 

direct classification of disease following serology or medical 

imaging; typing of patient lesions, which may help clinicians 

streamline diagnostic processes; discovery of new clusters of 

pathology; patient movement analysis, which may assist targeted 

therapeutic care; and �nally, projection of disease progression.

Disease Detection

Due to their pattern recognition ability, ML algorithms are com-

monly used to differentiate between classes of observations. 

Regarding MS, di�erentiation is often used for disease detection.

Serum Biomarkers

Machine learning approaches are frequently used for classi�-

cation problems that require tabular data. Several studies have 

used ML to identify protein and lipid biomarker concentration 

patterns to di�erentiate between individuals with MS and indi-

viduals without MS.29,30

Goyal et al29 applied 4 classification algorithms to detect 

MS from concentrations of 8 serum cytokines: interleukin 

(IL) 1β, IL-2, IL-4, IL-8, IL-10, IL-13, interferon gamma, and 

tumor necrosis factor alpha. These data were compiled from 

previous studies and comprised 956 individuals with MS and  

199 controls without MS. Of the 4 models, the random forest 

performed best for all comparative categories, with accuracy 

of 90.91%, sensitivity of 0.756, speci�city of 0.857, and an AUC 

of 0.957. The support vector machine performed second-best 

in all categories; however, its sensitivity and speci�city were 

both lacking, with scores of 0.500 and 0.633, respectively. The 

performances of the decision tree and neural network were 

poor. The random forest distinguished between individuals 

with remitting and nonremitting MS with an accuracy of 70%.

Tsoukalas et al30 applied a neural network to detect auto-

immune disease via serum concentrations of 28 biomarkers, 

of which 23 were fatty acids. Their �nal model had an AUC of 

0.792 and a predictive accuracy of 76.2%. The most predict-

ive biomarker was cis-11-eicosenoic acid (C20:1n9), which 

accounted for more than 10% of the strength of the model. 

A principal components analysis discovered 7 principal  

components, accounting for more than 70% of the variance 

among those data.

These studies support hematology as a modality to detect 

autoimmune diseases; however, note that the range of  

biomarkers that  these authors investigated was not  

exhaustive. Further investigation is needed to identify  

biomarkers indicative of clinically isolated syndrome, radio-

logic syndrome, and MS prodrome. Continuance of this 

research may enhance the ancillary diagnostic ability of  

serology and enable routine evaluation of patients who might 

otherwise remain undiagnosed due to early disease progres-

sion or symptom obfuscation by another condition.

Medical Imaging

Much MS research involving ML has revolved around di�eren-

tiating individuals with MS from controls without MS and dis-

tinguishing disease stages. Such classi�cation algorithms have 

been developed using various imaging techniques, including 

MRI and optical coherence tomography (OCT). 

Eitel et al31 developed a convoluted neural network—a 

subcategory of neural networks—to distinguish individuals 

with MS from controls via MRI. The authors acknowledged 

their small sample size (N = 147, individuals with MS = 76) and 

mitigated this restriction by pretraining the model on a larger 

data set to distinguish between controls and patients with 

Alzheimer disease. The �nal model in MS achieved an AUC 

of 96.08%, demonstrating a strong capacity for detection. In 

addition, the authors generated visual representations show-

ing the signi�cance of each pixel and, therefore, each brain 

region in the neural network’s decisions. As such, appropriate 

neural network use may highlight clinically relevant lesions to 

assist in diagnostic decisions by radiologists. 

Using OCT—a technique that measures retinal cell layer 

thickness—Cavaliere et al32 developed a support vector clas-

sifier to distinguish individuals with MS from age-matched 

controls. The OCT images contained scans of 3 cell layers seg-

mented into smaller regions around the macula and optical 

nerve head. After training, the 3 measurements with the great-

est di�erential ability were (1) the whole ganglion cell layer, 

between the retinal pigment epithelium boundaries and the 

inner limiting membrane; (2) the inner nasal retina; and (3) the 

outer nasal retina. A combined model using these 3 regions 

displayed a classification ability with an AUC of 0.97. This 

study highlights a potential avenue for diagnosis in patients 

for whom typical diagnosis via MRI is not recommended.

Although ML is neither necessary nor su�cient for disease 

diagnosis, its implementation in diagnostic processes may 

create an assistive layer to support clinicians. ML may detect 

disease markers missed by clinicians and serve as a second 

opinion for medical professionals. Further investigation may 

work toward integrating ML-based disease detection into prac-

tice and focus on di�erentiating people with MS from those 

with other neurologic diseases.

Typing of Lesion Clusters

Beyond the broad clinical applicability of machine-based MS 

detection, ML has also demonstrated efficacy in discrimin-

ating between lesions with high and low clinical relevance. 

Kocsis et al33 investigated ML’s ability to di�erentiate MS lesion 

types and assess their clinical relevance using 3 MRI sequen-

ces: spin echo (SE), fast spoiled gradient echo (FSPGR), and 

�uid-attenuated inversion recovery. Lesions were identi�ed, 

and k-means clustering (k = 2) was applied using the median 

intensity values of the white matter lesions from all sequences. 

Fluid-attenuated inversion recovery had a negligible effect 
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on clustering. In cluster 1, 100% and 69% of lesions were eas-

ily discernable (median intensity Z ≥ 2.3) for FSPGR and SE, 

respectively. In contrast, for cluster 2 (high intensity), 78.7% 

were easily discernable for FSPGR, but this number shrank to 

17.7% for SE. Cluster 2 alone revealed an association between 

lesions and the Expanded Disability Status Scale score.34

According to Kocsis et al,33 expansion of this technique 

could render SE sequencing obsolete, thereby reducing the 

number of redundant measurements. Further investigation 

may explore relationships between lesion clusters and other 

metrics of disability and additional ways of clustering beyond 

median intensity values.

New Clusters of Pathology

By classifying people with comparable disease patterns, clus-

ter analysis can be a potent tool in precision medicine. Such 

clustering empowers clinicians to provide patients with more 

individualized care, leading to better health outcomes.

Silveira et al35 investigated symptom clusters (groupings 

of related and concurrent symptoms) and their relationship 

with quality of life (QOL) across 205 individuals with MS aged  

20 to 79 years strati�ed into 20-year age groups. Psychological 

symptoms were recorded via the Pittsburgh Sleep Quality 

Index, the Hospital Anxiety and Depression Scale, and the 

Fatigue Severity Scale. In addition, the 36-Item Short Form 

Health Survey measured QOL. 

Participants were grouped via k-means clustering (k = 3) 

on the psychological symptom questionnaire results, and the 

resultant clusters represented mild, moderate, and severe 

symptom experiences. Correlation and partial correlation 

analysis confirmed relationships between mental health 

measures and QOL. With 1 notable exception, the severe 

symptom cluster consistently displayed the highest mean 

symptom scores across fatigue, depression, anxiety, and sleep; 

the inverse was true for the mild symptom cluster. The oldest 

age group (60-79 years) was the lone exception, where both 

moderate and severe symptom clusters were associated with 

comparably poor sleep quality. Because 1 symptom may indi-

cate other latent symptoms, this study reinforces the need for 

comprehensive mental health treatment. Furthermore, the 

increased prevalence of sleep-related symptoms for the eldest 

age group con�rms the necessity for an age-related focus on 

mitigating sleep disorders.

Unlike the cross-sectional study by Silveira et al,35 Eshaghi 

et al36 sought to identify novel subtypes of MS while account-

ing for disease progression within each subtype. SuStaIn 

was applied to brain MRIs from 9390 individuals with 

MS, which identified 4 distinct subtypes, later defined as  

“cortex-led, normal-appearing, white matter–led, and lesion-

led.” Significantly, these subtypes outperformed traditional 

subtyping (ie, relapsing-remitting, primary progressive, 

and secondary progressive MS) as predictors of disability 

progression. Furthermore, predictive power was improved 

by introducing other features, including standard clinical 

phenotypes and the Nine-Hole Peg Test. Interestingly, persons 

in the lesion-led subtype were most responsive to pharmaceut-

ical-based treatment. Such novel groupings of individuals with 

MS empower clinicians to better predict disease progression 

and provide more individualized care.

Cluster analysis can group individuals with compar-

able psychological or physical symptoms. However, such  

groupings are currently of low clinical value because it is 

unclear how they relate to disease progression or symptoms. 

Future studies will investigate new groupings and respective 

clinical relevance.

Analysis of Movement

Imaging is essential for physicians to assess many aspects of 

disease progression; however, other aspects can be measured 

directly at a lower cost. Several studies have implemented ML 

to assess movement patterns of individuals with MS compared 

with controls. 

Movement Classi�cation

With the rapidly increasing prevalence of so-called smart-

watches, much attention has been paid to algorithmic move-

ment classification using data gathered via their onboard 

sensors. Chitnis et al37 used multiple wearable accelerom-

eters to record dynamic movement in both laboratory and  

free-living conditions. A neural network was �rst trained on 

adults without MS before its application to data from adults 

with MS. The algorithm classified data into “run,” “walk,” 

“idle,” or “other” and further classi�ed gait segments such as 

“stance” for subsequent analysis. Several correlations were 

found between movement features gathered from machine-

labeled data during free living and the Multiple Sclerosis 

Functional Composite,38 including both stance time (r
s
 = –0.56) 

and leg movement rate during sleep (r
s
 = –0.45). 

PRACTICE  

POINTS
Artificial intelligence, including machine 

learning, may assist with earlier diagnosis of 

multiple sclerosis by identifying previously 

unrecognized neurologic conditions even during 

unrelated health care procedures.

Artificial intelligence, including machine 

learning, may be used to monitor therapeutic or 

rehabilitation efficacy or disease progression in 

free-living conditions outside the constraints of 

a clinic.  ■
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Movement classi�cation promises to assist in automating 

time series segmentation and labeling, enabling research that, 

preceding such techniques, was impossible or insurmount-

ably time-consuming. Wearable sensors, bolstered by move-

ment classification, may facilitate physician assessment of 

free-living movement for individuals with MS and provide 

evaluations of MS progression without needing in-o�ce tests. 

Signi�cant research and development will be needed to cre-

ate algorithms to accurately assess movement in free-living  

situations; however, smartwatch–based sensors o�er a promis-

ing avenue to vast quantities of data. 

Detection of Disease Severity

In addition to discrimination between movement types,  

classi�cation via movement sensors can di�erentiate between 

individuals with MS and controls. Moreover, such models have 

highlighted the movement features most predictive or indica-

tive of various stages of disability for individuals with MS.

Sun et al39 used a random forest on force plate data to identify 

which postural movements best di�erentiate individuals with 

MS from controls. Balance di�erences were identi�ed between 

individuals with MS with low fall risk and control participants, 

which may be difficult to measure in standard therapy. The  

3 best predictors for individuals with MS with mild symptoms 

(by Expanded Disability Status Scale) were sway anteroposter-

ior sample entropy, mediolateral sway range, and sway area, 

accounting for 15.3%, 15.1%, and 14.8% of the diagnostic per-

formance from the 19 measured variables. Mediolateral sway 

range accounted for 62.3% of the performance in individuals 

with MS with moderate disability. Sway range in the medi-

olateral direction, mediolateral sway path, and mediolateral 

mean velocity were the best predictors for those with severe 

symptoms, accounting for 32.9%, 20.1%, and 18.1% of the mod-

el’s performance, respectively. The final model differentiated 

between individuals with MS and controls with accuracy, sensi-

tivity, and speci�city all greater than 0.95. 

Similar models may support therapist intervention by assess-

ing fall risk in individuals with MS. Via an increased understand-

ing of patient movement patterns, therapy may more readily tar-

get speci�c patterns of ataxia. Future studies might investigate 

whether fall risk can be detected separately from other disability 

markers. Doing so may help highlight individuals with elevated 

risk of falling relative to their disability status. 

Movement Components

When recording many variables, as is common in gait studies, 

several can be deeply related. The resulting collinearity may be 

addressed by transforming variables into their principal com-

ponents. Monaghan et al40 applied principal components analy-

sis to 21 recorded gait characteristics gathered using sensors 

on the feet, wrists, chest, and lower back. The characteristics—

including stride length, swing time, and range of motion knee 

variability—were reduced to 6 factors that explained 79.15% of 

the variability. Their relative contributions to gait variance were 

as follows: pace (24.81%), rhythm (16.57%), variability (13.02%), 

asymmetry (9.27%), anteroposterior dynamic stability (8.01%), 

and mediolateral dynamic stability (7.47%). Relative to controls, 

individuals with MS displayed signi�cantly reduced pace, vari-

ability, and mediolateral trunk motion performance. Individuals 

with MS who had fallen in the past 6 months exhibited reduced 

pace and increased asymmetry compared with those with MS 

who had not fallen. Finally, pace positively correlated with 

scores on the Stroop task and Berg Balance Scale and negatively 

correlated with fear of falling. 

With only 6 principal  components accounting for  

approximately 80% of the variance across 21 measured char-

acteristics, principal components analysis highlights collin-

earity in gait. Indeed, principal components analysis can help 

eliminate superfluous measurements, and by reducing the  

dimensionality of data, can simplify their interpretation.

Inference of Cognitive Impairment

Monaghan et al40 demonstrated that physical movement  

patterns can predict psychological symptoms. Clinicians can 

infer many aspects of disease progression, including cognitive 

impairment, without requiring speci�c measurements by iden-

tifying correlations between various symptoms.

Brummer et al41 investigated how serum neuro�lament light 

chain was correlated with MRI lesion markers, the Expanded 

Disability Status Scale, and the Symbol Digit Modalities Test 

used to measure cognitive impairment. The study of 152 individ-

uals with MS found that serum neuro�lament light chain, via a 

support vector regression, could predict scores on the Symbol 

Digit Modalities Test with P = .004, standard error of 0.192, and 

accuracy (regression coe�cient) of 0.561, and when incorpor-

ating lesion and grey matter volume into the model, accuracy 

validated against a new cohort increased to 90.8%. 

For patients facing barriers to access, eg, those with severe 

vision loss, similar models may allow clinicians to predict clin-

ically relevant metrics while eschewing the testing procedures 

themselves. Currently, research in this area is sparse. Future 

studies are needed to investigate other biomarkers and their 

ability to predict metrics of disability. 

Prediction of Disease Progression

No single factor determines the best course of treatment in 

MS; instead, numerous factors, including cost, patient prefer-

ences, coexisting health issues, and disease severity, are con-

sidered. To facilitate the highest level of care, clinicians must 

identify patients most suited to speci�c trials or therapies.

In a double-blind, placebo-controlled study of dirucotide (a 

myelin-damaging, autoimmune response–mitigating drug), 

Law et al42 compared 3 decision tree variations, 2 logistic 

regression variations, and 2 support vector machine variations 

to predict secondary progressive MS progression in a cohort 

of 485 individuals with MS over 6 months as measured by the 

Multiple Sclerosis Functional Composite. The best-performing 

models by AUC were a standard decision tree (0.618), a random 

forest (0.607), and a variant decision tree (0.602). 

Foreknowledge of patient condition and disease progression 

can improve treatment, allowing clinicians to customize care 

to mitigate expected symptoms. By excluding patients with 
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favorable short-term disability progressions and patients likely 

to respond well to standard care, experimental therapies can 

focus on high-risk patients, maximizing potential reward and 

mitigating potential risk. Advanced knowledge of disease pro-

gression may comfort individuals with MS living with uncer-

tainty. Unfortunately, despite the modest success of Law et al,42 

their best AUC was not vastly better than chance. Future stud-

ies must endeavor to create more accurate predictive models.

DISCUSSION
During the past decade, AI, particularly ML, has gained 

prominence in MS research and is anticipated to aid future 

discoveries in earlier detection, slowing disease progression, 

regaining function, and developing a cure. Its classi�cation, 

regression, feature reduction, and clustering capability have 

made ML a powerful analytical tool. Further advancements 

may create systems that alert clinicians during ancillary test-

ing when test results are consistent with those of individuals 

with MS. Moreover, early disease identi�cation may lead to 

earlier treatment and improved outcomes.

Unfortunately, there are several major limitations of ML 

in the study and treatment of MS. These limitations include 

the esoteric nature of ML, current diagnostic ability, the black 

box nature of many algorithms, the potential for harm via 

algorithmic misuse, the inability of a machine to consider 

consequences, and both the introduction and perpetuation 

of bias.  

Due to the relatively recent expansion of ML in MS 

research, its use and understanding is restricted to special-

ized communities. As such, some clinicians may have reser-

vations about implementing these techniques or equipment 

that uses them in their practices. However, the surge in stud-

ies using ML techniques in MS research demonstrates devel-

oping mainstream adoption. This limitation will gradually 

relax as ML is increasingly adopted in standard practice.

Similarly, use of supervised learning in diagnosis is limited 

by our diagnostic ability, which relies on human-labeled data; 

this limitation will naturally be lessened as MS diagnostic 

methods advance, thus strengthening future algorithms.

Even ML itself is not limitation free. Complex ML models 

such as neural networks may be challenging for humans to 

interpret due to the high number of parameters and predict-

ors, making them black box algorithms, which contrast with 

more readily interpreted models such as simple decision 

trees. Due to a lack of explanatory power between inputs and 

outputs, black box models’ interpretability limits their appli-

cation.43 Therefore, researchers may opt for simpler models 

when interpretability is required.

Ribeiro et al44 demonstrated the risk of black box mod-

els with a neural network seemingly trained to distinguish 

between photos of huskies and wolves that was instead 

trained to distinguish between snowy and grassy back-

grounds. The same risk is true for MS research; a black 

box model may seem to perform well but instead relies on 

unintentionally powerful predictors, eg, the presence of a 

drug exclusively used to treat MS, to predict the presence of 

MS. Despite this drawback, these models have shown much 

promise in MS research, and this risk may be mitigated with 

careful data curation.

Ethical standards for ML research and clinical care must 

prioritize minimizing potential harm to people, just like 

traditional research. In some instances, the risks are compar-

able; the risk of an iterative linear regression, for example, is 

comparable with its closed-form variant. Unfortunately, ML 

has the potential to cause harm beyond typical research. In 

an infamous scenario, researchers at Target deduced that a 

high school student was pregnant before she told her family 

and unwittingly alerted her father via pregnancy-related 

�yers.45 Similarly, when conducting health research in MS, 

researchers must be mindful of sensitive patient information 

and strive to protect privacy.

Like humans, AI is subject to bias, and a common way bias 

is introduced is through a biased training set. For example, a 

model trained primarily on data from a cohort of only women 

might not generalize well to a mixed-sex cohort. Moreover, 

the separation of results by sex is frequently overlooked in MS 

research,46 despite signi�cant sex-based di�erences in disease 

e�ects.47 This problem could be particularly severe.

Similarly, external prejudice and practice variation can 

contribute to bias. For instance, because women may be 

less likely to be prescribed analgesics than similarly situ-

ated men,48 a model trained on such skewed data may per-

petuate this trend. Likewise, in MS, despite similar clinical  

circumstances, 1 sex may be prescribed certain therapies less 

frequently than the other.

Moreover, even unbiased algorithms may introduce auto-

mation bias: the e�ect of being swayed by computerized pre-

dictions that di�er from one’s thoughts.43 Note that although 

AI might contribute to bias, it can also work to lessen it. 

Rather than causing more prescription disparities between 

men and women, a well-designed algorithm may aid in 

reducing them.

Finally, a machine’s inability to consider the human cost of 

incorrect decisions may lead to catastrophic effects. Unlike 

humans, who may exercise caution around diagnostic uncer-

tainty and recommend further testing, machines make no 

such compromise without specific instruction.43 Indeed, 

because machines lack the capacity, researchers must be espe-

cially cognizant of potential harm. Currently, ML must be used 

only as an assistive tool, not as a decision-making authority. 

Although AI, including ML, is seemingly perpetually on 

the frontier of medical advances, clinicians and researchers 

must remain conscious of the potential pitfalls of its imple-

mentation. Despite these challenges, ML is continuing to 

create new opportunities for research and care.

CONCLUSIONS
This literature review discusses ML’s e�ectiveness in locating 

lesions, diagnosing MS, gauging level of disability, and assist-

ing with rehabilitation. ML has created models that can iden-

tify MS from medical imaging, blood samples, and biosensor 

data. The capability and scope of research, diagnostics, and 
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rehabilitation will be expanded by further integrating ML into 

research and clinical equipment, ultimately enhancing the 

standard of care and quality of life for individuals with MS. ■
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